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Abstract. This paper is concerned with the limiting ring closure probability index (a). 
We obtain rigorous upper and lower bounds for the numbers of tadpoles weakly embeddable 
in a lattice. These bounds are used to prove the existence of a particular limit fci tadpoles 
and to derive a lower bound on a. Using Monte Carlo methods we estimate that, for the 
face-centred cubic lattice, a = 2.18k0.07. 

1. Introduction 

Although self-avoiding walks have been extensively studied as models of polymers with 
excluded volume, no satisfactory theory exists since there appears to be no convenient 
way of handling the long-range correlations inherent in the problem. A few rigorous 
results are known but most of our current knowledge in this area comes from Monte 
Carlo and exact enumeration studies. This paper is concerned with a particular aspect 
of this problem, ie with the probability of ring closure. 

If we consider the addition of a step to a self-avoiding walk the resulting graph will 
be a self-avoiding walk or a polygon or a tadpole (this statement forms the basis of an 
important counting theorem (Sykes 1961)). The formation of a tadpole or a polygon 
corresponds to ring closure and we wish to investigate the relative probabilities of various 
types of ring closure. 

It will be convenient to work with undirected graphs. A simple chain is a connected, 
undirected graph with two vertices of degree one and all other vertices of degree two. 
It is the undirected equivalent of a self-avoiding walk. A polygon is a connected, 
undirected graph with all vertices of degree two, while a tadpole has one vertex of 
degree one, one vertex of degree three and other vertices of degree two. Let the numbers 
of simple chains and polygons with n edges, weakly embeddable in a given lattice, be 
respectively (n)c and (n),,. Let the number of tadpoles with h edges in the circuit and t 
edges in the simple chain from the vertex of degree one to the vertex of degree three be 
(h,  &. (The symbols used as subscripts are designed to suggest the topology of the 
graph concerned.) 

Wall et al (1954) have distinguished between the initial and limiting ring closure 
probabilities which, in our notation, are 

5 6  



Limiting ring closure probabilities in the S A  w problem 

and 

P h  = lim [(h, - l ) (h  + t - 
t +  m 

where q is the coordination number of the lattice. 
Wall estimated that 

p i  - h-"" (3) 

P h  - h-" (4) 

and 

with a = a, = 2. The symbol - is used in the sense that the ratio of the two sides of 
the expression tends to a finite positive limit as h tends to infinity. The initial ring 
closure probability has been extensively studied by exact enumeration methods with 
the conclusion that 

in two dimensions 
a. = { E  

2-2 in three dimensions. 
( 5 )  

The limiting ring closure index has recently been studied by Trueman and Whitting- 
ton (1972) using Monte Carlo methods, and by Guttman and Sykes (1973) by exact 
enumeration. Both sets of authors agree that a > 2 for all lattices studied. For the 
square lattice Trueman and Whittington estimated a N 2.13 and the estimates of 
Guttman and Sykes were 

a = 2.10+0.10 (triangular) 

(square) f 0 . 3 0  a = 2-15-0.15 

a = 2.15f0.15 (face-centred cubic) 

a = 2.10f0.15 (simple cubic). 

(6) 

In spite of there being good numerical estimates of a there is no rigorous evidence 
that the limit in (2) exists. In this paper we prove a limiting theorem for tadpoles which, 
although not sufficiently strong to establish the existence of the limit, is a move in this 
direction. We also derive some rigorous bounds on the numbers of tadpoles which 
suggest some likely bounds on a. Finally we present a Monte Carlo estimate for a for 
the face-centred cubic lattice. 

For the unrestricted random walk case the exponents can be calculated analytically 
(see eg Domb 1954), with the result a = a. = 1 in two dimensions and 1.5 in three 
dimensions. 

2. Existence of a limit for tadpoles 

Consider a tadpole with h edges in the head and t edges in the tail. If we delete an edge 
in the head, emanating from the vertex of degree three, we obtain a simple chain of 
(h + t - 1) edges. Each of the (h, t)a tadpoles will give rise to a different simple chain so 
that 

(h, t)a < (h+t-l)c. (7) 
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Hammersley and Morton (1954) showed that 

lim n-' ln(n), = k 
n +  x 

where k is a constant characteristic of the lattice, so that (7) and (8) imply that 

lim sup ( h  + t)- '  ln(h, t)a < k. (9) 

We now wish to find a lower bound on (h,  t)a. Consider the figure eights with h 
edges in one circuit and ( t +  1) edges in the other. Let there be (h,  t + 1)8 of these. Now 
consider deleting an edge, in the circuit of ( t  + 1) edges, emanating from the articulation 
point. The resulting graph is a tadpole so that 

( h  + t)-+ m 

(h ,  t + 1)s < (h ,  ?)a. (10) 

(On some lattices t + 1 must be even. To establish a corresponding result for t even it is 
simply necessary to delete two edges giving (h,  t + 2), < (h ,  &.) 

Whittington and Valleau (1970) have shown that 

(m 4 8  2 (m)o(n)o (11) 

on the square lattice and their argument is easily extended to other lattices. Then (10) 
and (1 1) give 

(12) (h+t)-'ln(h),+(h+t)-' In(t+1), < ( h + t ) - '  h(h, &. 
Hammersley (1961) has shown that 

lim n - l  ln(n), = k 
n--. x 

and (1 2) and (1 3) give 

lim inf (h  + t ) -  ' ln(h, t)a 2 k 
( h + f ) - + m  

so that (9) and (14) give 

lim ( h  + t ) - '  ln(h, t)a = k. 
( h + t ) - +  m 

(14) 

3. Lower bound on the limiting ring closure index 

To obtain a lower bound on a we require an upper bound on (h ,  t)a. Consider the class 
of graphs formed by joining each simple chain of t edges, at each vertex of degree one, 
to each polygon of h edges, at each vertex. These graphs will include all tadpoles with 
h edges in the head and t edges in the tail so that 

(h9 o a  Wh)o(t)c .  (16) 

(n)c nypn (17) 

Numerical evidence on (n)c and (n)o suggests that 

and 

where y, p > 0 and p = exp(k). 
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Consequently, from (17) and (18), we obtain 

and from (16) and (19) we obtain 

a 2 fl-1. 

4. Monte Carlo data 

We have estimated a for the face-centred cubic lattice by estimating the numbers of 
tadpoles and self-avoiding walks using the variance reduction scheme suggested by 
Hammersley and Morton (1954) and by Rosenbluth and Rosenbluth (1955). The method 
is very appealing but has seldom been used. We have found that it is especially useful 
for lattices of high coordination number. Consider the generation of the ith walk in a 
sample of N walks. As the jth step is to be added each of the possible (q - 1) vectors is 
examined to determine which of them do not lead to an immediate intersection. Let 
there be Ai j  of these. The next step to be added is chosen from among these Aij  steps, 
each vector being accepted with probability A; '. 

The weight of the ith walk is n;=, Aij and an unbiased estimate of the number of 
n step self-avoiding walks is 

N n  

If Aij is zero at any step, the walk is terminated and assigned a weight of zero. The 
extension to the estimation of tadpoles is completely straightforward and we do not 
pursue the details here. 

We have estimated the numbers of tadpoles and self-avoiding walks with a total of 
up to thirty edges on the face-centred cubic lattice. Where the results could be checked 
against exact enumeration (Guttmann and Sykes 1973) the agreement is good. The 
total sample size of walks used was 250000. 

Since we are concerned with estimating lim,+a [(h, t)& + ?)cl = s(h) we have 
confined our attention to h < 15 so that the number of edges in the simple chain is at 
least as great as the number of edges in the circuit. Our estimates of these limits are in 
excellent agreement with those of Guttmann and Sykes (1973) for h < 6 but for h = 7, 
8 and 9 our estimates are slightly lower than theirs. We have estimated a by plotting 
In s(h) against In h and the results are shown in figure 1. 

The behaviour is quite linear for h > 6 and we estimate a = 2.18 f0.07. 

5. Conclusions 

The primary rigorous result of this paper is the establishment of the limit (15) and the 
proof that the value of the limit is the connective constant of the lattice. In fact our 
results also give an easy proof that 

lim (h + t ) -  ln(h, t)* = k. 
h+r-+m 
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l n  h 
Figure 1. Dependence of In s(h) on In h. The error bars represent subjective estimates of 
the reliability of the extrapolation to infinite tail length. 

The lower bound on a has not been established rigorously since it depends on the 
assumption of the validity of (2) and (4) as well as (1 7) and (1 8). However, the numerical 
evidence for these results is very persuasive. If we insert the numerical estimates for B 
(Martin et a1 1967) we obtain 

1.75 (three dimensions) 

1.50 (two dimensions). 
U > {  

These results are quite weak compared to numerical evidence but they do show that U 
cannot have the same value for self-avoiding walks as for random walks. 

Finally, our Monte Carlo data for the face-centred cubic lattice yield an estimate 
of a in good agreement with the results of Guttmann and Sykes (1973). Unfortunately 
the Monte Carlo data are not sufficiently good to decide if U is different for the square 
and face-centred cubic lattices. 
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